| TYPE OF | NO. | COMPLETE NAME | STRUCTURE | PERCENT | PERCENT | CARBON
BOILING (7)
POINT ° F. | REID VAPOR
PRESSURE
LB./SQ. IN. | LATENT HEAT OF
EVAPORATION
BTU PER LB. | FREEZING
POINT
° F. | NG VALUE
ER 1B. (1) | BTU PER
U. S. GAL.
AT 68° F. | SPECIFIC
GRAVITY
AT 68° F. | WEIGHT PER
U. S. GAL. 1B.
AT 68° F. | | R (2) | | | |----------|-----|--|---|---------|---------|-------------------------------------|---------------------------------------|--|---------------------------|------------------------|------------------------------------|----------------------------------|---|--------------|---------------------|-------------------|-------------------| | COMPOUND | | | | HYDI | CA | BOIL | REID
PRE
LB./ | EVAP
BTU | FRE | HEATING BTU PER L | | SPI
GR. | WEIG
U. S. O | NO | | | 4 ML. | | PARAFFIN | 1 | NORMAL PENTANE | H H H H H
H | 16.8 | 83.2 | 97 | 16 | 154 | -201 | 19,300 | 101,000 | 0.626 | 5.23 | 41 | RICH
41 | 63 | 63 | | PARAFFIN | 2 | ISO-PENTANE OR
2-METHYL BUTANE | H - C - H H H H H H H H H H H H H H H H | 16.8 | 83.2 | 82 | 22 | 146 | -255 | 19,300 | 100,000 | 0.620 | 5.17 | 76 | - | 120 | 130 | | PARAFFIN | 3 | NEO-HEXANE OR
2,2-DIMETHYL BUTANE | H - C - H H H - C - H H H H H H H H H H | 16.4 | 83.6 | 122 | 10 | 133 | -148 | 19,200 | 104,000 | 0.649 | 5.42 | 78 | | 130 | 130 | | PARAFFIN | 4 | 2,3-DIMETHYL BUTANE | H H - C - H H H H - C - H H - C - | 16.4 | 83.6 | 136 | 8 | 138 | - 199 | 19,200 | 106,000 | 0.662 | 5.52 | 85 | _ | 140 | >160 | | PARAFFIN | 5 | NORMAL HEPTANE | * * * * * * * * * * * * * * * * * * * | 16.1 | 83.9 | 209 | 1.7 | 138 | - 131 | 19,200 | 110,000 | 0.684 | 5.71 | ZERO
O.N. | ZERO
O.N.
(5) | 50
O.N.
(5) | 50
O.N.
(5) | | PARAFFIN | 6 | 2,4-DIMETHYL PENTANE | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 16.1 | 83.9 | 177 | 3.5 | 128 | -183 | 19,100 | 107,000 | 0.673 | 5.62 | 62 | 62 | 95 | 95 | | PARAFFIN | 7 | TRIPTANE OR 2,2,3-
TRIMETHYL BUTANE | H H H H H H H H H H H H H H H H H H H | 16.1 | 83.9 | 178 | 3.6 | 125 | - 13 | 19,100 | 110,000 | 0.690 | 5.76 | 140 | 200 | 200 | 300 | | PARAFFIN | 8 | ISO-OCTANE (OCTANE)
OR 2,2,4-TRIMETHYL
PENTANE | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 15.9 | 84.1 | 211 | 1.8 | 117 | - 161 | 19,100 | 110,000 | 0.692 | 5.77 | 100 | 100 | 153 | 153 | | PARAFFIN | 9 | 2,2,3-TRIMETHYL
PENTANE | H - C - H - C - H H H H H H H H H H H H | 15.9 | 84.1 | 230 | 1.2 | 121 | - 170 | 19,100 | 114,000 | 0.716 | 5.98 | 100 | 120 | 150 | > 160 (6) | | PARAFFIN | 10 | 2,3,3-TRIMETHYL
PENTANE | H H H H H H H H H H H H H H H H H H H | 15.9 | 84.1 | 239 | 0.9 | 123 | - 151 | 19,100 | 116,000 | 0.726 | 6.06 | 100 | 120 | 150 | >160 | ^{1,} Lower heating value which does not allow for heat due to condensation of steam formed during combustion. 2545 BTU equals one horsepower hour. ^{2.} Approximate values. Current rich mixture knock test methods do not assign Performance Numbers to alcohols due to their low heats of combustion. However, alcohols, if tested at very high specific fuel consumptions, have very high Performance Numbers. When blended with water the three alcohols listed all have very high Performance Numbers and very high resistance to preignition. Average maximum values. Straight-run gasoline used in Grade 73 may have a Performance Number of only 40 before the addition of lead (one ml.). All values in Performance Numbers except normal heptane. Zero octane number corresponds to a Performance Number of about 22. ^{6. &}gt; 160 means above 160. < 75 means below 75. ^{7.} At atmospheric pressure. | TYPE OF COMPOUND | NO. | COMPLETE NAME | STRUCTURE | PERCENT | PERCENT | BOILING (7)
POINT ° F. | REID VAPOR
PRESSURE
LB./SQ. IN. | LATENT HEAT OF
EVAPORATION
BTU PER LB. | FREEZING
POINT
° F. | HEATING VALUE
BTU PER LB. (1) | BTU PER
U. S. GAL.
AT 68° F. | SPECIFIC
GRAVITY
AT 68° F. | WEIGHT PER
U. S. GAL. 18.
AT 68° F. | | ERFORMAN | C VALUE NCE NUMBER (2) | | | |------------------|-----|----------------------------|---|---------|---------|---------------------------|---------------------------------------|--|---------------------------|----------------------------------|------------------------------------|----------------------------------|---|------|----------|------------------------|-------|--| | | | | | HY | 20 | 80 | REII
PR | EVA
BTI | | | | NOA | WEI
U. S. | LEAN | RICH | LEAD | 4 ML. | | | PARAFFIN | 11 | 2,3,4-TRIMETHYL
PENTANE | H - C - H H - C - H H - C - C - C - C - C - H H - C - H H - C - H H - C - H H H | 15.9 | 84.1 | 236 | 1.0 | 123 | - 165 | 19,100 | 114,000 | 0.719 | 6.00 | 100 | 120 | | >160 | | | CYCLIC PARAFFIN | 12 | CYCLOPENTANE | ",c , | 14.4 | 85.6 | 121 | 10.5 | 160 | -137 | 18,800 | 117,000 | 0.745 | 6.22 | 65 | >100 | 100 | >160 | | | CYCLIC PARAFFIN | 13 | METHYL CYCLOPENTANE | | 14.4 | 85.6 | 161 | 4.8 | 155 | -224 | 18,800 | 118,000 | 0.749 | 6.25 | 58 | - | 88 | 140 | | | CYCLIC PARAFFIN | 14 | CYCLOHEXANE | H - C H H H H H H H H H H H H H H H H H | 14.4 | 85.6 | 177 | 3.5 | 154 | + 44 | 18,800 | 122,000 | 0.767 | 6.50 | 55 | - | 84 | 130 | | | AROMATIC | 15 | BENZENE OR BENZOL | н-с с с-н | 7.6 | 92.4 | 176 | 3.4 | 169 | + 42 | 17,200 | 126,000 | 0.879 | 7.34 | 68 | >160 | 68 | >160 | | | AROMATIC | 16 | TOLUENE OR TOLUOL | H-¢-c | 8.8 | 91.2 | 231 | 1.2 | 156 | -139 | 17,400 | 126,000 | 0.867 | 7.23 | 93 | >160 | 95 | >160 | | | AROMATIC | 17 | ORTHO-XYLENE | #-¢ | 9.5 | 90.5 | 292 | 0.3 | 149 | - 13 | 17,600 | 129,000 | 0.880 | 7.34 | 85 | 85 | 100 | 100 | | | AROMATIC | 18 | META-XYLENE | H-C-H | 9.5 | 90.5 | 282 | 0.35 | 147 | - 54 | 17,600 | 127,000 | 0.864 | 7.21 | 100 | >160 | >100 | >160 | | Lower heating value which does not allow for heat due to condensation of steam formed during combustion. 2545 BTU equals one horsepower hour ^{2.} Approximate values. ³ Current rich mixture knock test methods do not assign Performance Numbers to alcohols due to their low heats of combustion. However, alcohols, if tested at very high specific fuel consumptions, have very high Performance Numbers. When blended with water the three alcohols listed all have very high Performance Numbers and very high resistance to preignition. Average maximum values. Straight-run gasoline used in Grade 73 may have a Performance Number of only 40 before the addition of lead (one ml.). All values in Performance Numbers except normal heptane. Zero octane number corresponds to a Performance Number of about 22. ^{6. &}gt; 160 means above 160. < 75 means below 75. ^{7.} At atmospheric pressure, | TYPE OF COMPOUND | NO. | COMPLETE NAME | STRUCTURE | PERCENT | PERCENT | BOILING (7)
POINT ° F. | REID VAPOR
PRESSURE
LB./SQ. IN. | LATENT HEAT OF
EVAPORATION
8TU PER LB. | FREEZING
POINT
° F. | HEATING VALUE
BTU PER LB. (1) | BTU PER
U. S. GAL.
AT 68° F. | SPECIFIC
GRAVITY
AT 68° F. | WEIGHT PER
U. S. GAL. LB.
AT 68° F. | | | CE NUMBERS (2) | | |---------------------------------|-----|--|--|---------|---------|---------------------------|---------------------------------------|--|---------------------------|----------------------------------|------------------------------------|----------------------------------|---|------|------|----------------|------| | | | | | - = | | 9 4 | | | | | -54 | | U.S | LEAN | RICH | LEAN | RICH | | AROMATIC | 19 | PARA-XYLENE | H-C-C-C-H | 9.5 | 90.5 | 281 | 0.35 | 146 | + 56 | 17,600 | 126,000 | 0.861 | 7.19 | 100 | >160 | >100 | >160 | | AROMATIC | 20 | ETHYL BENZENE | H H H C C H | 9.5 | 90.5 | 277 | 0.4 | 146 | -139 | 17,600 | 127,000 | 0.867 | 7.24 | 93 | >160 | 100 | >160 | | AROMATIC | 21 | CUMENE OR
ISOPROPYL BENZENE | H-C-H
H-C-H
H-C-H
H-C-H | 10.1 | 89.9 | 306 | 0.2 | 134 | -141 | 17,700 | 128,000 | 0.862 | 7.19 | 78 | >160 | 93 | >160 | | AROMATIC | 22 | NORMAL PROPYL
BENZENE | H - C - C - C - C - C - H H H H H | 10.1 | 89.9 | 319 | 0.15 | 137 | -147 | 17,700 | 127,000 | 0.862 | 7.19 | 78 | >160 | 93 | >160 | | OLEFIN | 23 | ISO-BUTYLENE | H H-C-H H
H-C - C - C-H
H | 14.4 | 85.6 | 20 | 65 | 169 | -221 | 19,400 | 96,000 | 0.594 | 4.96 | | | - | | | OLEFIN | 24 | 2,3,3-TRIMETHYL-
1-BUTENE (TRIPTENE) | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | 14.4 | 85.6 | 172 | 3.6 | 124 | - 169 | 18,900 | 111,000 | 0.705 | 5.88 | 75 | _ | 84 | - | | OLEFIN | 25 | DIISOBUTYLENE
2,4,4-TRIMETHYL
-1-PENTENE | H H-C-H H H-C-H H C = C - C - C-H H H-C-H H H-C-H H H-C-H H H H-C-H H H H-C-H H | 14.4 | 85.6 | 215 | 1.6 | | -136 | 18,900 | 113,000 | 0.715 | 5.97 | 64 | - | 85 | >160 | | OLEFIN | 26 | DIISOBUTYLENE
2,4,4-TRIMETHYL
-2-PENTENE | H H - C - H H - C - H H H - C - C - C - C - C - H H - C - H H | 14.4 | 85.6 | 221 | 1.4 | 1 | -160 | 18,900 | 114,000 | 0.721 | 6.02 | 64 | - | 85 | >160 | | AROMATIC AMINE
AND ANTIKNOCK | 27 | ANILINE | " | 7.6 | 77.4 | 364 | 0.04 | 187 | + 21 | 15,000 | 128,000 | 1.022 | 8.53 | | - | - | | ^{1.} Lower heating value which does not allow for heat due to condensation of steam formed during combustion. 2545 BTU equals one horsepower hour ^{2.} Approximate values. Current rich mixture knock test methods do not assign Performance Numbers to alcohols due to their low heats of combustion. However, alcohols, if tested at very high specific fuel consumptions, have very high Performance Numbers. When blended with water the three alcohols listed all have very high Performance Numbers and very high resistance to preignition Average maximum values. Straight-run gasoline used in Grade 73 may have a Performance Number of only 40 before the addition of lead (one ml.). ^{5.} All values in Performance Numbers except normal heptane. Zero octane number corresponds to a Performance Number of about 22, ^{6. &}gt; 160 means above 160. < 75 means below 75. ^{7.} At atmospheric pressure. | TYPE OF COMPOUND | NO. | COMPLETE NAME | PERCENT HYDROGEN | ROGEN | PERCENT | BOILING (7)
POINT ° F. | REID VAPOR
PRESSURE
LB./5Q. IN. | LATENT HEAT OF
EVAPORATION
BTU PER 18. | FREEZING
POINT
° F. | HEATING VALUE
BTU PER LB. (1) | STU PER
U. S. GAL.
AT 68° F. | SPECIFIC
GRAVITY
AT 68° F. | WEIGHT PER
U. S. GAL. 1B.
AT 68° F. | P | | KNOCK VALUE RFORMANCE NUMBERS (2) | | | | |---------------------------------|-----|---|--|-------|---------|---------------------------|---------------------------------------|--|---------------------------|----------------------------------|------------------------------------|----------------------------------|---|------|--------|-----------------------------------|-----------------|--|--| | | | | STATE OF THE | PER | 25 A | 100 | PRE LB. | | | | | A A S | WEIG
U. S. | NO L | RICH | LEAD | 4 ML. | | | | AROMATIC AMINE
AND ANTIKNOCK | 28 | MONO-METHYL
ANILINE | H-C-H
N-C-H | 8.5 | 78.5 | 384 | 0.02 | 172 | - 71 | 15,600 | 128,000 | 0.986 | 8.23 | LEAN | RICH - | LEAN | RICH CONTRACTOR | | | | AROMATIC AMINE
AND ANTIKNOCK | 29 | 2,4-XYLIDINE | | 9.2 | 79.3 | 420 | 0.005 | 150 | - | 15,700 | 128,000 | 0.974 | 8.13 | - | - | - | - | | | | AROMATIC AMINE
AND ANTIKNOCK | 30 | 2,6-XYLIDINE | | 9.2 | 79.3 | 422 | 0.005 | 150 | - | 15,700 | 128,000 | 0.979 | 8.17 | - | | - | | | | | ANTIKNOCK | 31 | TETRAETHYL LEAD | H H-C-H | 6.2 | 29.7 | 360
DE-
COMP. | 0.02 | 73 | -213 | - | - | 1.653 | 13.8 | 1 | 1 | - | - | | | | ORGANIC
HALIDE | 32 | ETHYLENE DIBROMIDE
(1,2-DIBROMO ETHANE) | H H
Br-C-C-Br
H H | 2.1 | 12.8 | 269 | 0.5 | 82 | + 50 | | | 2.181 | 18.2 | | | | | | | | INHIBITOR | 33 | NORMAL BUTYL
PARA-AMINO PHENOL | HO-C N-C-C-C-C-C-H | - | - | 500 (2) | - | - | +157 | - | 1 | - | - | 1 | 1 | - | - | | | | INHIBITOR | 34 | DI-SECONDARY BUTYL
PARA PHENYLENE
DIAMINE | H-C-C-C-C-H H-C-H H-C-H H-C-H H-C-H H-C-H H-C-H | | | 500
(2) | - | | + 40 | - | | | | | | - | | | | | INHIBITOR | 35 | DI-METHYL TERTIARY
BUTYL PHENOL | H - C - N - C | _ | 1 | 480
(2) | - | - | + 70 | - | - | - | - | - | _ | - | - | | | | ALCOHOL | 36 | METHANOL
(WOOD ALCOHOL) | н
н-С-он
, н | 12.6 | 37.5 | 148 | 4.5 | 470 | -144 | 8,400 | 56,000 | 0.793 | 6.62 | 75 | -(3) | <75 | -(3) | | | ^{1.} Lower heating value which does not allow for heat due to condensation of steam formed during combustion, 2545 BTU equals one horsepower hour. ^{2.} Approximate values. Current rich mixture knock test methods do not assign Performance Numbers to alcohols due to their low heats of combustion. However, alcohols, if tested at very high specific fuel consumptions, have very high Performance Numbers. When blended with water the three alcohols listed all have very high Performance Numbers and very high resistance to preignition. Average maximum values. Straight-run gasoline used in Grade 73 may have a Performance Number of only 40 before the addition of lead (one ml.). ^{5.} All values in Performance Numbers except normal heptane. Zero actane number corresponds to a Performance Number of about 22. ^{6. &}gt; 160 means above 160. < 75 means below 75. ^{7.} At atmospheric pressure. | TYPE OF COMPOUND | NO. | COMPLETE NAME | STRUCTURE | PERCENT | PERCENT | BOILING (7)
POINT ° F. | REID VAPOR
PRESSURE
LB./SQ. IN. | LATENT HEAT OF
EVAPORATION
BTU PER 18. | FREEZING
POINT
F. | HEATING VALUE
BTU PER LB. (1) | BTU PER
U. S. GAL.
AT 68° F. | SPECIFIC
GRAVITY
AT 68° F. | WEIGHT PER
U. S. GAL. 18.
AT 68° F. | | KNOCK VALUE PERFORMANCE NUMBERS (| | | |---|-----|---|------------------------|---------|---------|---------------------------|---------------------------------------|--|-------------------------|----------------------------------|------------------------------------|----------------------------------|---|-----------|-----------------------------------|------------|------------| | | | | | PEF | CA | | | | | EATI | | SP GR | WEIG
U. S. | NO I | | LEAD | 4 ML. | | | | | | | | | | A m | | I m | BANGE COLUMN | | | LEAN | RICH | LEAN | RICH | | ALCOHOL | 37 | ETHANOL
(GRAIN ALCOHOL) | H H
H-C-C-OH
H H | 13.1 | 52.1 | 173 | 2.5 | 370 | -179 | 11,600 | 76,000 | 0.789 | 6.58 | 75 | -(3) | <75 | -(3) | | ALCOHOL | 38 | ISOPROPANOL
(ISOPROPYL ALCOHOL) | H OH H H OH H H H H | 13.4 | 60.0 | 180 | 2.1 | 290 | -129 | 13,000 | 85,000 | 0.785 | 6.55 | 75 | -(3) | <75 | -(3) | | WATER | 39 | WATER | н-о-н | 11.2 | | 212 | 0.95 | 970 | + 32 | 0 | 0 | 0.998 | 8.33 | - | - | - | - | | AMMONIA | 40 | AMMONIA | H-N-H | 17.8 | - | -28 | - | - 1 | -108 | - | - | GAS | GAS | - | 1 | , Ja | - | | HYDROCARBON
PARAFFIN +
CYCLIC PARAFFIN
PLUS AROMATIC | 41 | STRAIGHT RUN
GASOLINE
(AVIATION) | | 15.5 | 84.5 | 110

300 | 2
TO
7 | 140 (2) | <-76 | 19,000 | 115,000 | 0.68- | 6 | 54
(4) | 61 (4) | 78
(4) | 93
(4) | | HYDROCARBON PARAFFIN + CYCLIC PARAFFIN PLUS AROMATIC | 42 | CATALYTICALLY CRACKED GASOLINE (AVIATION) | | 15 | 85 | 110

300 | 2
TO
7 | 140 (2) | <-76 | 19,000 | 115,000 | 0.70-
0.74 | 6 | 61
(4) | 85
(4) | 93
(4) | 130
(4) | | HYDROCARBON
PARAFFIN
ALMOST ENTIRELY | 43 | ALKYLATE
(MOSTLY OCTANES) | | 15.8 | 84.2 | 200-
300 | ABOUT
1.5 | 125 (2) | <-76 | 19,000 | 115,000 | - | | 76
(4) | 92
(4) | 120 (4) | 140 (4) | | HYDROCARBON
PARAFFIN
ALMOST ENTIRELY | | HOT ACID OCTANE
(MOSTLY OCTANES SUCH
AS NOS. 8 TO 11 INCL.) | | 15.8 | 84.2 | 200
-
275 | ABOUT
1.5 | 125 | <-76 | 19,000 | 115,000 | - | - | 100 (4) | 120
(4) | 150
(4) | >160 (4) | | CARBON | 45 | CARBON (SOLID) | c | | 100 | - | - | - | - | 14,600 | - | - | - | - | - | - | - | | HYDROGEN | 46 | HYDROGEN (GAS) | н – н | 100 | _ | - | - | - | - | 43,000 | - | - | - | _ | - | - | - | ^{1.} Lower heating value which does not allow for heat due to condensation of steam formed during combustion. 2545 BTU equals one horsepower hour. ^{2.} Approximate values. ^{3.} Current rich mixture knock test methods do not assign Performance Numbers to alcohols due to their low heats of combustion. However, alcohols, if tested at very high specific fuel consumptions, have very high Performance Numbers. When blended with water the three alcohols listed all have very high Performance Numbers and very high resistance to preignition. Average maximum values. Straight-run gasoline used in Grade 73 may have a Performance Number of only 40 before the addition of lead (one ml.). ^{5.} All values in Performance Numbers except normal heptane. Zero actane number corresponds to a Performance Number of about 22. 6. > 160 means above 160. < 75 means below 75. ^{7.} At atmospheric pressure.