
The geometry, tooth forms, ratios and dimen-
sions of production as well as modified gearsets
for the Rolls-Royce Merlin propeller speed reduc-
tion unit (PSRU) were presented in Part 1. We’ll
now explore the basic features and relations of
involute spur gearing. These can be found in text-
books and references but not all in one place or in
generally convenient forms. Many textbook pre-
sentations are aimed at accommodating the
design of a gear train using standard momentarily
popular tooth forms. They accordingly often con-
tain constants and assumptions that prohibit their
direct use in “reverse engineering” a gearset like
the R-R Merlin’s, which was at the cutting edge of
technology when it was designed. We hope the
results will be useful to AEHS Gearheads beyond
study of the R-R Merlin PSRU. 

The Involute Revisited
The involute of a circle (involute curve) is

defined as the trace generated when the free end
of a filament, held taut so as to form a continu-
ously extending tangent, is unwound from a base

circle. The involute curve has only one essential
form but its size or scale varies with the size of the
base circle. The pressure angle varies with position
on the involute curve. A 25° pressure angle, for
instance, is “farther out” than a 20° one (fig. 1).

A string wound tightly around a jar lid can be
used as an involute generator on the drawing
board. The lid is held down against paper and a
pencil inserted through a loop in the string free
end. When the string is unwound under constant
tension, the pencil draws the involute curve. The
jar lid can be traced to record the base circle.

Repeating this procedure with a variety of jar
lids yields illustrations of different “scale” invo-
lute curves and is excellent for education and
familiarization. The truths and utility of the invo-
lute curve in gear applications become clearer as
they are actually generated in working combina-
tions, not just studied in class or textbook.

Immediately it is seen that the base circle tan-
gent filament, equal in length to the arc from
which it is unwound, is the local involute radius
of curvature and its point of tangency to the base
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Fig. 1. (Left)An involute curve is formed at the free end, as a filament, held tightly as a tangent, is unwound from a base
circle. The tangent is the local radius of curvature of the involute. Normals to the tangent ends are tangent to the involute.
Any same-handed tangent to the base circle replicates these conditions when crossing an involute.
(Right) Line of Contact = Diagonal Mutual Tangent between Base Circles. Involutes of these circles meet in tangency along
the contact line with normals to the contact line. Radii of curvature of these involutes, at the contact line, all lie along the
contact line with their origins at the contact line origins.



circle is the “fixed” end of that local radius of cur-
vature. It is obvious that any tangent to the invo-
lute curve at a filament’s intersection or generat-
ing point on the curve is perpendicular to the fila-
ment/radius of curvature. This is a familiar scene
with machine elements as it is also true of roller or
ball bearings, cams against followers, etc. Any ele-
ment or component in contact with the involute is,
by definition, tangent to it .

Finally the realization dawns that all points of
the involute curve are drawn by ends of tangents
unwound from the base circle and hence ANY
tangent to the base circle intersecting the involute
is identical to and duplicates the generating tan-
gent filament of that point. The resulting gifts of
the involute to Gearheads are so profound that
one wonders why they have not been seized upon
by theologians. To wit, draw two circles in near
proximity, and then lay a mutual tangent diago-
nally between them. Connect the circles’ centers
with a straight line crossing the diagonal mutual
tangent and through this intersection place a short
straight line perpendicular to the diagonal mutual
tangent. This is the basic geometry of all mating
involute spur gears. Involutes swung from each of
the now recognized base circles through the
mutual tangent and centerline intersection obvi-
ously share the perpendicular as a mutual tangent
while the local radii of curvature lie in opposite
directions along the diagonal tangent.

A further shock to the imagination waits: At
any point on the diagonal mutual tangent, draw a
short line crossing and perpendicular to the
mutual tangent. Now swing an involute from each
of the base circle mutual tangent intersections
through that point. These share THAT short per-
pendicular as a tangent and this phenomenon is
continuous all along the diagonal mutual tangent.

Gearing isn’t composed of stationary base cir-
cles sprouting an infinite number of mating invo-
lutes but this view is well simulated by two rotat-
ing and meshing gears. The diagonal mutual tan-
gent from base circle to base circle is termed the
“contact line” (also “pressure line”). The involute
teeth of a rotating meshing gearset contact one
another only along this line (This remains true as
long as the driving/driven gear selection and
directions of rotation remain unchanged.
Changing the direction of rotation creates a
reversed or mirror image of the same basic
scheme). The involute teeth remain in contact
along the contact line and all contact positions

along this line support uniform driven rotation
with uniform driving rotation at the elementary
gear ratio of the gearset. This is known as “The
Conjugate Action of Involute Gears”.

An observation that bears repeating is “there is
only one involute curve!” It scales with its base
circle and “standard” gearsets of 20° or 25° pres-
sure angles merely make use of different portions
of the involute curve. The base circle of a given
pitch diameter 25° pressure angle gear is smaller
than the base circle for a 20° pressure angle gear
of the same pitch diameter. Thus 25° pressure
angle gears make use of a closer to the “toe” por-
tion of the involute’s pointy-toed-cowboy-boot-
like contour.

An oft proclaimed virtue of involute gearing is
its relative immunity to changes in center-to-cen-
ter distance. This can be seen in the left illustra-
tion of figure 2 (or Torque Meter Vol. 5, No. 1, pg
40) where changing the center to center distance
of the two original base circles (as from a 20° to a
25° pressure angle) does not disrupt the existing
geometry. The diagonal mutual tangent rotates a
bit, the pressure angle increases uniformly in all
its appearances and the resulting smaller value of
the cosine of the now larger pressure angle oper-
ating on the increased implied pitch radii justifies,
again, the original base circle radii.

That’s fine but don’t abuse the privilege!
Increasing the center-to-center distance also
increases the tooth bending stress, increases the
gear separating loads and decreases the number
of teeth in simultaneous contact (contact ratio).
This can end up in a “bootstrapping” operation
with increased noise and massive gearbox failure.
Old folks who long ago ran increased displace-
ment and highly provoked flathead Ford V-8s in
front of post ’39 “Sideloader” gearboxes are likely
to retain such memories. This type of problem is
not yet an endangered species.

While not directly involved, I have recently
(well fairly recently) been sideswiped by the
failed attempt by a large agricultural machinery
manufacturer to use a “Sideloader” gearbox and
also felt the disappointment of a wanna-be air-
craft engine manufacturer who insisted on a long
spur gear train in a too-light alloy housing. Steel
or other high modulus plates centerline inset in
light alloy housings to support and constrain gear
shafts or bearings have long been a traditional
cure for such problems.
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The contemporary thought is that the near lin-
ear relation of material density to modulus invali-
dates the traditional solution as the weight
increase will be the same whether a similar
amount of stiffness is added by higher density
steel inserts or just overall increased thickness of
the light alloy gearbox. This misses the point.
Centerline steel (or beryllium!) takes gear loads in
nearly direct tension and compression. The walls
of light alloy housings, even though thickened,
receive these loads mainly through shear paths.
This considerably reduces their overall center to
center stiffness.

Contact Ratio
The contact line length (see fig. 2) determines

the theoretical maximum number of teeth that
may be in simultaneous contact (contact ratio)
with a straight cut gearset of given pitch for the
gear diameters in question. This number is typi-
cally not reached in practice and there are good
reasons to limit the number of teeth in simultane-
ous contact. Achieving the highest possible con-
tact ratio value requires use of the full tooth
depth, i.e., progressive contact from a large outer
diameter to a small root diameter. This full use of
the tooth face has two obvious and immediate
effects:

1) Sliding typically increases with increased
contact departure from the “neutral point” and
this CAN present wear problems at the high pitch
line velocities found in high speed gearing.

2) The local involute radius of curvature
decreases sharply as the base diameter is
approached so contact pressure and Hertzian
stress rise (more about this later) and can become
a problem as contact extends toward the base cir-
cle. Early wear and surface failure in high power
transmission service are potential results.

Accordingly, diametral pitches (i.e., tooth
sizes) are typically chosen so that no more than
1.4 to 1.6 teeth are in contact at any one time. This
is not “cast in concrete”. For instance, light load-
ing and the need for ultra quiet operation may
well dictate a higher contact ratio.

The reasonable assumption that there exists
sufficient involute tooth profile “below” the tan-
gent pitch circles of a gearset (think root diame-
ter/dedendum thoughts) to allow rotation with
the intended tooth crown ODs (think addendum
thoughts) allows a simple and accurate calcula-
tion of the effective contact line length and hence

the actual contact ratio of the gearset (see fig. 2).
This total effective contact length divided by

the normal pitch yields the contact ratio of the
gearset. The normal pitch (tooth pitch along the
contact line) is obtained by dividing the base cir-
cle circumference by the number of teeth in the
gear.

Tooth Breakage
A primary concern for any gearset is tooth

breakage in service. Merlin tooth breakage is a
particular worry today as unlimited racers extend
the service envelope, vary ratios and hence
increase pitch line loads. Tooth breakage is not
the simple concern it first appears. A loaded gear
tooth resembles some sort of a beam in bending
but this view is complicated by load sharing
among multiple teeth, the rate of load application
at speed (suddenly applied loads can double
nominal deflection and stress), stress concentra-
tion at fillet radii and the fact that the stress equa-
tions don’t apply without error to a short, wide,
stubby and tapered beam even if the point of load
application were to be essentially fixed by restrict-
ing the contact ratio.

Experience shows that a satisfactory gearing
service life can be roughly predicted by calcula-
tion. A reasonable but all-in-all arbitrarily defined
and located stress level and subsequent compari-
son to the material properties of the critical gear
are involved.

In order to evaluate the tooth breakage poten-
tial of R-R PSRU gearing we begin by computing
the maximum contact line load at the correspon-
ding input rpm with the chosen ratio and pitch
radii. The contact line load is equal to 33,000 x hp
divided by the pitch line velocity (V) in feet per
minute (where V = π x pinion base circle diameter x
rpm/12). This load is hypothetically applied through a
pinion tooth corner as the corner crosses the contact
line. It is resolved at the tooth centerline (CL) intersec-
tion into radial and normal to the tooth CL compo-
nents. This is illustrated and the geometry
explored in figure 3.

The radial or tooth CL parallel component is
applied along the tooth CL and is assumed to
cause uniform compression loading in the region
of the tooth base where it is generally ignored.
This may not be entirely justified as will be seen
later.
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Fig.2. Total Pressure Line and Effective Contact Line.
A right triangle is formed in one of the gears by the base circle radius, its right angle attachment to the contact line and the
pitch circle radius of that gear coincident with the center-to-center line. The two radii are known. With help from
Pythagoras we find the length of the contact line tangent from base circle to the gearset center-to-center line. Replacing the
pitch circle radius with the (outer diameter) tooth crown radius so that its origin remains at the gear center and the other
end intersects the contact line tangent on the far side of the gearset center- to-center line, Pythagoras once again helps find
this newly defined length along the contact line. We then subtract from this newly defined line the previously found length
of contact line from base circle to the center-to-center line to obtain the remainder as the portion of the effective contact line
attributable to the OD radius/tooth crown radius of the gear. Repeating these efforts for the mating gear and adding the two
effective contact line portions, we obtain the total effective contact length of the gearset.

Fig. 3. Worst Case Load Through a Single Tooth Corner
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Fig. 4. Tooth as a Beam in Bending, Case # 1: Fillet Radii Tangent to Radial Tooth Flanks. (Derived from a graphical
method presented by Buckingham.)
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Fig. 5. Tooth as a Beam in Bending, Case #2: Fillet Radii Tangent to Involute Tooth Flanks. (Derived as a precursor to
analytic determination of tooth beam dimensions, equivalent to a graphical method presented by Spotts.)



The CL normal component is the bending load
for our short, wide, stubby, and tapered tooth
beam. It is applied at the tooth CL/tooth corner
load intersection.

The tooth (beam) critical section in bending
and its location are determined by one of two
arbitrary but similar techniques, one for the 
65-tooth gearset and one for the 71-tooth gearset,
both of which were described in Part 1.

Case #1: Triangular Load Path
Case #1 occurs when the gear tooth shape is a

bit re-entrant because the root circle is sufficiently
smaller than the base circle that the fillet radii are
tangent to radial tooth flanks inboard of the invo-
lute surfaces. Fillet radii are, of course, also tan-
gent to the root circle. A straight side triangular
load path core is assumed within the tooth pro-
file. The apex is at the intersection of tooth CL
and contact line through a tooth corner. The trian-
gle sides are tangent to the fillet circles and the
triangle base is the line connecting these tangent
points. The triangle base is taken as the beam crit-
ical section thickness in bending. Calculation of
the critical section and effective beam length are
presented in figure 4.

Case #2: Parabolic Load Path
Case #2 occurs when the base circle is smaller

than the root circle. Fillet circles in this case are
tangent to the involute gear flanks and the root
circle. The tooth profile is entirely involute to the
fillet tangencies and beyond. There is no conver-
gence or re-entrance to this shape and an
inscribed parabola with peak through the CL cor-
ner tooth load/contact line intersection and tan-
gent to the fillet circle is an appropriate load path
assumption. Again, beam depth or thickness is
the straight line between the parabolic load path
fillet tangencies. The beam length is the radial dis-
tance from this base line to the CL/parabola peak.
Unfortunately, attempts to write a rational equa-
tion for this arrangement end up one notch worse
than cubic. However iteration (a public relations
term for trial and error) rolls out the solution to
three places in a few steps. This is presented
graphically and algebraically (without the itera-
tive steps) in figure 5.

Evaluating Tooth Stresses
The tooth beam dimensions L and d have been

calculated, they may be used with the tooth CL
normal force value and the tooth face width (b) to
obtain peak equal tension and compression
stresses at the tooth critical section base. If this
stress value is roughly HALF of the useful gear
material strength and none of the values for pitch
line speed, contact ratio, rubbing velocity, or
dynamic load are out of line, there is a reasonable
chance for success and cause to proceed with fur-
ther analysis, fabrication and test.

Today, the use of standard gearing is made
convenient by extensive tables of gear tooth form
factors, also called Lewis Factor “Y” values that
incorporate tooth beam L and d terms, are scaled
by tooth size (circular pitch, or p) and tabulated
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Fig. 6. Derivation of the Lewis Equation for a Gear Tooth as
a Beam in Bending.
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by the number of teeth in a gear. This is quick
and convenient but unfortunately does not help
to reverse engineer gearing that was on the cut-
ting edge long ago and for which specific tooth
characteristics and resulting Lewis Factors did not
find their way into our present Tables. However
Lewis Factor “Y” values are easily derived 
(Y = d2/6Lp) for comparison with today’s stan-
dard tooth forms (fig. 6).

Rolling and Rubbing
Teeth of equally-sized involute spur gears have

pure rolling contact at the pitch point where the
contact line crosses the gear center-to-center line.
This point defines the radii of the two tangent cir-
cles (pitch circles), each of which is concentric to a
base circle.

The radii of curvature of two mating teeth of
two equal gears are equal at this point and the
angular velocity of the two equal gears is also
equal. The local velocity of a gear tooth surface is
equal to the product of the local radius of curva-
ture times the angular velocity of the gear.
Remembering “equals times equals” from long
ago, we see that we have a velocity match at this
point and hence pure rolling contact.

Away from this point the radii of curvature of
the mating teeth are unequal portions of the con-
tact line. The products of angular velocity and
radii of curvature are therefore unequal and there
is a component of sliding or “cam type” contact
equal to the difference between the two radii of
curvature times angular velocity products. It is
typically an oscillating or lapping action, with
motion in one direction as the mating gears
approach the neutral point and opposite motion as
they leave it. Unequally sized gears (i.e., reduction
gears) often show an effective contact line that is
not centered about the neutral point and have
higher sliding velocities.

An exercise with similar triangles as in figure 7
brings a pleasant surprise: pure rolling contact
ALWAYS exists where the contact line crosses the
mutual centerline of two meshed gears. In other
words, the neutral point remains in place regard-
less of the gear ratio.

Sliding velocity (plus and minus) plotted with
pitch line velocity as a “median” reference along
the line of contact illustrates the phenomena well.
Radial positions along a gear tooth correspond to
positions on the line of contact and may be used
as an alternate ordinate. 

The physical effects of this sliding component
of involute gear tooth contact are not often detri-
mental when the contact ratio is small and it then
compares favorably with the ball/race sliding con-
tact in a ball bearing. Careful examination of a
good running ball bearing after substantial service
reveals three continuous and distinct ball tracks
typically predominant in the outer race. The cen-
tral track is due to the ball equatorial diameter
rolling against the race. The outboard two tracks
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are from each ball’s smaller spherical segment
diameters (on each side of the equatorial diameter)
skidding against the race as the ball’s rolling rpm
is insufficient for these smaller diameters in their
travel about the raceway.

Good running gear teeth usually pick up a bur-
nished shine from their oscillatory sliding action,
ball bearing raceway unidirectional sliding typi-
cally results in a slightly dull wear surface.

Dynamic Loads
Mean contact load on PSRU gearing is easily

reckoned. However, the thumps, bumps and iner-
tia coupling antics of a reciprocating internal com-
bustion engine plus inevitable dimensional errors
in gear manufacture can lead to repetitive loads
much greater than mean values on PSRU gears
trapped between the rotating engine and propeller
masses. A shudder strong enough to just drop the
load to zero between teeth of two gears in contact
at their pitch radius (and hence just before the
teeth carry the entire contact line load) will cause
the load to effectively double when the gears
resume contact. The effect is MUCH worse, of
course, if the bump or shudder actually separates
the two teeth and powered acceleration occurs
across the closing gap.

Dynamic loading of this sort was investigated
by an American Society of Mechanical Engineers
committee circa 1931. The results are very rigor-
ously reported by Earle Buckingham (a member of
this committee) in his Analytical Mechanics of Gears
and in a much more user friendly but less rigorous
fashion in Merhyle Franklin Spotts’ Design of
Machine Elements, where two dynamic load equa-
tions are presented:

1) The “Barth” equation considers the nominal
contact line load and a modifying factor involving
only the pitch line velocity and so seems more
suited to heavier and cruder industrial applica-
tions.

2) The “Buckingham” equation, in contrast,
involves gear error tolerance, coupled masses,
gear material resilience and coupling elasticity. It
seems well suited for application to the R-R
Merlin PSRU with its precise (0.0005” error pre-
sumed) hardened and ground gears, and with its
impulse attenuating torsionally flexible quill shaft
coupling the crankshaft and pinion. Further the
Buckingham equation in its Spotts presentation is
in a form which allows extraction of constant
(“C”) covering the net effect of the listed variables

for cases where service experience permits prior
determination of a sustainable dynamic load.

Gearsets subjected to excessive dynamic load-
ing exhibit pitting, flaking and abrasive wear of
tooth working surfaces and eventually fail.
Fortunately, this failure mode may be caught
BEFORE catastrophic structural damage and has
in general proven to be predictable from examina-
tion of the dynamic load. Design parameters are
chosen so that bending stress equals no more than
one half the gear material tensile strength (this is
nominally also the endurance limit in reversed
bending). This, at first glance, suggests a “safety
factor” of approximately two but covers less than
half the story. Typical contact ratios place around
1.5 teeth in simultaneous contact near the pitch
circle at all times, thereby dividing the contact line
load between teeth. Also, the points of load appli-
cation, on average, are well down from the highly-
leveraged corner. This all serves to produce a
gearset that will handle the nominal contact line
load without tooth failure in bending. With rea-
sonable attention to gear surface hardness, finish,
lubrication and coupling flexibility between the
engine and propeller rotating masses, it also pro-
vides a margin between nominal pitch line load
and dynamic load that avoids surface pitting, flak-
ing or pitting induced abrasive wear.

However, oscillation caused by reciprocating
engine foibles and gear tooth error in a new and
undeveloped or recently modified system can cer-
tainly surprise us with severe loads at a frequency
that leads to the variety of surface fatigue failures
noted above. Accordingly it is always wise to ana-
lytically investigate expected dynamic loading and
materially sustainable Hertzian stress at the pitch
radii of a gearset under study even though the
corner loaded single tooth bending stress appears
satisfactory.

That’s All for Now
Part 3 will complete the tools necessary to com-

pare gear stresses to material properties. These
will be used to evaluate the potential service per-
formance of the various stock and modified
gearsets for the R-R Merlin PSRU in today’s envi-
ronment including unlimited racing.

Errata - Part 1 (TM Vol. 5, No. 1)
Page 39: pitch diameter = 5.5827, not 5.5872.
Page 40: base diameter = 5.24602, not 5.25025.
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